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Using mean-field theory we compute the frequency-integrated neutron cross section
I(q,T) for spin-glasses. We find, as observed experimentally, that the temperature of
the maximum of I (¢,7') depends on the momentum transfer g and is different from the
freezing temperature T, at which the susceptibility x(¢,7) has a cusp. These results
suggest that recent neutron scattering experiments are consistent with a sharp phase
transition at a single temperature T, in spin-glasses.

Among the more puzzling experimental results The frequency-integrated neutron scattering
concerning the concentrated spin-glass alloys cross section is given by?
are Murani’s recent neutron scattering measure- do N/ve? \2 Bt
ments,! which show that the frequency-integrated o= %(:;T@) % | F(q)|21(q, T). (1)
scattering intensity I(g, T) has a temperature-de- "
pendent maximum which varies with momentum Here N is the number of scattering sites, %k and
transfer g. These data have been interpreted!® as k' are the incident and final wave vectors of the
suggesting that there is no unique freezing tem- neutron, ye?/mc? is the coupling constant, and
perature in these alloys, associated with the spin-  F(q) is the scattering form factor which varies
glass phase. Rather, the system is viewed as on a scale characteristic of atomic dimensions.
subdivided into correlated, ferromagnetic clus- The quantity I(q, T) is given by
ters, which freeze at different temperatures de-

ending on their characteristic size. N1 o e (B, B
P The purpose of the present Letter is to show 1(q,T) =N i'zj)[@, 8ol expliqs (R: -R;), (2)
that these neutron experiments are consistent
with the theory that there is a sharp phase transi-  where []c denotes a configuration average and it
tion in the spin-glasses. This is demonstrated is assumed that, consistent with experiment,’
in two different ways based on (i) a simple data the magnetic contribution dominates that of po-
analysis and (ii) 2 mean-field random-phase ~ap- tential scattering. I(q, T) is generally written as

roximation (RPA) calculation of the neutron
I;cattering cross section, appropriate to concen- Ha, 1) =ksTx(a, ) +15(q, D), ®
trated spin-glasses. where kj is the Boltzmann’s constant. We thus

- | define
kyTx(q, T)=N"1 §{[<§a'§a>]c - [@J' <§J~>]c}exz)[i§' (ﬁi —-f.{j)], (4a)
and
Is(q, )=N"* ZI(8)-G]. explig: (R:i-R,)]. (4b)

i,J

This last term plays a role analogous to the Bragg scattering term in ordinary ferromagnets, whereas
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the first is the wave-vector-dependent suscep-
tibility.® In periodic ferromagnets, away from
the reciprocal-lattice vectors I3(¢q, T)=0. By
contrast, for spin-glasses, this term is very
important, :

In the Edwards-Anderson* (EA) mean-field the-
ory, the spin-glass order parameter is Q;;
= [+ §p],. Thus, I3(g, T) is the Fourier trans-
form of the order parameter. While @;; «5;; in
the EA theory, it is reasonable to assume more
generally that this order parameter has some
finite spatial extent which reflects the character-
istic range of the direct (ferromagnetic) spin-
spin correlation. Because I(q, T) represents an
order parameter, it decreases monotonically to
zero as T approaches the freezing temperature
T,. The term T¥(g, T) is expected to have a sharp
maximum at 7, and the sum of these two contri-
butions can then lead to a maximum in I(g, T)
which occurs at a g-dependent temperature 7(q)
<T,, as is observed experimentally.’

In Fig. 1, we illustrate how the above remarks
are consistent with experimental data! on a rather
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FIG. 1. The wave-vector—dependent susceptibility
T x(q,T) in an Au Fe alloy deduced by subtracting an
estimate of the “Bragg” term (dashed) from the mea-
sured (Ref. 1) total cross section I(¢,7) (plotted in
the inset). Values of ¢ were 5.2, 6.9, 8.6, and 13.8
x10"% A1 from top to bottom.

concentrated 10% AuFe spin-glass. The inset
shows the experimental measurements!® of I(q, T),
indicated by solid lines. The dashed lines repre-
sent estimates of the “Bragg” contributions at
each q. These are obtained by drawing smooth
monotonic curves through the known points /3 (q, 0)
=1(q,0) and I3(q, T,) =0. It should be noted from
the data that I3(g, 0) =I(q, 0) is strongly ¢ depen-
dent. This confirms the notion that the EA order
parameter has some spatial extent. To be con-
sistent with direct measurements of the spin-
glass order parameter,® as well as with calcula-
tions to be described below, we chose Iz(q, T) so
that the exponent B is less than 1. The range of
acceptable values of T, has as its lower bound
the maximum 7T ,(g), which is 33+ 1 K, and can
be a few degrees above it. We choose T, =35 K.
This is consistent with 7, =35+ 5 K found by
other investigators® for alloys of the same con-
centration. The result of the subtraction, (g, T)
-I5(q,T)], is illustrated in Fig. 1. As expected,
all the Tx(q, T) curves have their maximum at

T,, consistent with mean-field theory. This in-
terpretation of the data is, clearly, not definitive,
but it is, nevertheless, extremely suggestive of
the fact that the neutron measurements are not
inconsistent with a sharp phase transition in the
spin-glasses.

We now extend the EA mean-field theory to
compute I(q, T). We use a cluster decomposition
of the EA model Hamiltonian to include some of
the direct ferromagnetic interactions expected in
a concentrated spin-glass like Au,, Fe, , and to
be consistent” with specific-heat data,

== Zz\vagu'g)\_EiZ‘{Jijogiv'§ju- (5)

This model, which was introduced earlier” to
discuss the behavior of the thermodynamic prop-
erties of the spin-glasses, contains both intra-
cluster interactions (with ferromagnetic exchange
constant J;,° as well as intercluster interactions
(with random exchange constant J,,). The former
are treated exactly whereas the latter which rep-
resent the weaker interactions between far-away
spins are computed in random-mean-field theory.
Greek indices refer to a particular cluster and
Roman indices to a given spin within that cluster.
Here §,=22;8i,. The present theory may be
viewed as a way of treating the simplest type of
fluctuation corrections to mean-field theory: The
clusters represent those spins between which the
exchange interactions are too strong to be treated
adequately by mean-field theory.
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We take J,, to be a near-neighbor interaction [(§;° 8], =M;; and [(8)+ §)].= Q;; for an average
distributed with probability cluster of N spins. The effects of including a
distribution of cluster sizes are discussed below.
P(J,,) = (1/V2nd) expl - (7,,~ J,y)2/ 2J2], Here ¢ and j belong to the same (vth) cluster;

22i,;M;;(T) is the cluster moment (7T) and
where J’ is the net ferromagnetic intercluster ex- Ei,jQi ;(T)=Q(T) is the intracluster contribution
change interaction. Using the replica method we to the order parameter.” M=M(T) and Q= Q(T)
compute the intracluster variational parameters were discussed in an earlier paper.” Following
| Refs. 7 and 8, we have

M (T)= (277)'3/2f d’ e'ﬂ’zTr[Ey' §j,,e- lBl"eff]Z' L (6)
and

Qi(T) = @1) %2 [ ad e~ 21r[§; e 22 1] - TrlS;,e” sactl] 4=
where

—H = 250,,98,,08,,+ T (3Q) V%8, + 2T 28(M - @5, §,+35, - Z_/J e

i<j

% (7

Here Z =Tre" 5% eff and J=zY2J » With 2 equal to the number of cluster mean neighbors of a given clus-
ter and B=(kgT) .

The susceptibility x(¢, 7) is computed by including a magnetic field term LH *8; in £°' and differ-
entiating the induced local moment (§;) with respect to H;. We find after straightforward algebra that,

for J,(q)=20,J,»"expliq® (R, - Ry,
kyTx(q, T) =[M(q, T) - Q(q, T)/{1 - BJ(q)[M(q, T)- @(q, D]}, (8)
where

M(q,T)= Ze) M;(T) expli§* (R; - R;)]

and Q(g, T) is defined analogously. As was expected, this result is of the generalized Ornstein-Zernike
form. In the limit in which M and @ are independent of ¢, Eq. (8) was suggested by earlier workers,®
The intercluster “Bragg-like” contribution to (g, T) can be similarly derived by expanding [(S,s)*(S;,)],
for v#3 to lowest order in J’ and factorizing the configuration average of the product into the product
of the averages, This yields the expected RPA-like result

[Bes) @i =8 ,%) { )\Z:/éJux'[@ka)' @il = Qi) +,5" [Brs) &2l - Qi)Y (9)
jei

where ! and j range only over sites within a particular cluster. Upon taking the Fourier transform and
adding the intracluster contribution Q(g, 7) we find

Iy(q, T) = Q(q, TV/{1 - pJ (@) [ M(q, T) - g, T]}. (10)

Note that (i) I5(q, T) is zero for 7> T, and that (ii) the characteristic range of the direct ferromagnetic
interactions leads to a ¢ dependence in Ig(g, T) through both the intracluster and intercluster interac-
tions. Equation (10) for the case in which @ and M are ¢ independent and 7= T, was derived else-
where.'® Combining Egs. (8) and (10) gives

I(q, T)=M(q, T)/{1 - pJ (@) [ M(q, T) - Q(g, T)] }. (11)

We have investigated the T dependence of Eq. (11) for a range of models. It can be shown analytical-
ly that for rigid, giant Heisenberg spins (in which di/dT =0) I(q, T) has a maximum at 7,. We find
from a systematic numerical analysis that I(q, T') will always have a maximum below T,, for both Heis -
enberg and Ising spins, wheneveyr (i) dM/dT+ 0and (ii) J# 0. These results are insensitive to the de-
tailed g dependence of M and @, so that the cluster configuration and size are irrelevant parameters.
The cluster model is only necessary in order to obtain a temperature dependence in M.
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For definiteness we illustrate these general re-
marks with a particular example. We consider
an average cluster size of N =10 Ising spins which
interact ferromagnetically with their near neigh-
bors. This represents essentially the largest
cluster for which Egs. (6) and (7) can be numeri-
cally evaluated. The use of Ising rather than
Heisenberg spins was necessary in order to treat
the maximum possible N. We chose 1J/J,1~ 0,01
to yield reasonably good agreement with the spe-
cific heat C,, temperature dependence.” As in
Ref, 7 it was found that both C, and x(0, T) were
in semiquantitative quantitative agreement with
experiment. For simplicity, we choose to place
the cluster spins in a one-dimensional array with
q parallel to the cluster and we took J,(g)/J,

=(0.008-0.01)(¢qa)?, where a is the characteristic
spin-spin separation, This satisfies the physical
requirements that J,(q) decrease with increasing
g and J,(0) <J, in order to be in the spin-glass
phase, Our final results are not sensitive to this
functional form provided J,(¢) >0, for all ¢ of in-
terest. We took J,(0) to be rather close to the
maximum allowed value in order to obtain a sharp
cusp in x(0,T), as is observed experimentally,

In Fig, 2 are shown the numerically computed
curves I(g, T) as a function of T for several dif-
ferent values of ga<1l. These curves illustrate
the typical range of behavior for the calculated
I(gq, T) and similar results have been obtained for
very different model parameters. They should
be viewed as qualitatively (rather than quantita-
tively) representative of the behavior of I(g, T) in
real spin-glasses. The dashed lines represent
the “Bragg” contribution I3 (g, T) whereas Tx(q, T)
is plotted in the inset. The latter quantity always
has a cusp at T,. As in the experimental observa-
tions, I(q, T) has a g-dependent maximum below
T,, which maximum increases toward T, (but
always stays somewhat below it) as g decreases.
For small values of ¢ a we also find a small fea-
ture at T, which may be a consequence of our
mean-field calculations. In summary, these re-
sults corroborate the essential assumptions made
in our data analysis.
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FIG. 2. Computed curves for(q,T) vs T for qa
=0.05, 0.1, 0.2, 0.3 from top to bottom. The “Bragg”
terms are dashed. The inset plots T x(g,T).
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